

 Navigation

 	
 index

 	JTracker latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/jtracker/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/jtracker/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	JTracker latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 build/phpcs/Joomla/IDE/readme.html

 Navigation

 		
 index

 		JTracker latest documentation »

IDE auto formatters

		Eclipse PDT
Go to Preferences->PHP->Code style->Formatter and Import eclipse_pdt3_formatter.xml

		Zend studio
@todo

		PHPStorm
Copy the file joomla_phpstorm.xml to:
		Mac ~/Library/Preferences/WebIdeXX/config/codestyles/Joomla.xml

		Windows <User home>\.WebIdeXX\config\codestyles\Joomla.xml

		Linux ~/.WebIdeXX/config/codestyles/Joomla.xml

References

		PHPStorm http://www.jetbrains.com/phpstorm/webhelp/code-style-xml.html

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/App/Tracker/tpl/new-issue-template.html

 Navigation

 		
 index

 		JTracker latest documentation »

Steps to reproduce the issue

Expected result

Actual result

System information (as much as possible)

Additional comments

 © Copyright 2016.
 Created using Sphinx 1.3.5.

build/phpcs/Joomla/README.html

 Navigation

 		
 index

 		JTracker latest documentation »

Joomla Coding Standards

This repository includes the Joomla [http://developer.joomla.org] coding standard definition for PHP Codesniffer [http://pear.php.net/PHP_CodeSniffer] along with a few other helpful resources. The PHP_CodeSniffer standard will never be 100% accurate, but should be viewed as a strong set of guidelines while writing software for Joomla.

See Joomla coding standards documentation at http://joomla.github.io/coding-standards/

If you want to contribute and improve this documentation find the source files at https://github.com/joomla/coding-standards/tree/gh-pages

Requirements

		PHP 5.3+

		PHP Codesniffer [http://pear.php.net/PHP_CodeSniffer] 1.5+

Important note: currently the latest PHPCS is the 2.x series. But Joomla Sniffers is not yet compatible with this version. PEAR gives you the option to install it by default but Joomla sniffers will not work, thus remind to always install PHPCS in a version below 2.0.

Installation

Installation is as easy as checking out the repository to the correct location within PHP_CodeSniffer’s directory structure.

Install PHP_CodeSniffer.

pear install PHP_CodeSniffer-1.5.6

Install the Joomla standard.

git clone https://github.com/joomla/coding-standards.git `pear config-get php_dir`/PHP/CodeSniffer/Standards/Joomla

Running

You can use the installed Joomla standard like:

phpcs --standard=Joomla path/to/code

Alternatively if it isn’t installed you can still reference it by path like:

phpcs --standard=path/to/joomla/coding-standards path/to/code

IDE autoformatters

There is further information on how to set up IDE auto formatters here:

https://github.com/joomla/coding-standards/tree/master/IDE

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Internationalisation/Crowdin.html

 Navigation

 		
 index

 		JTracker latest documentation »

Translations via Crowdin [image: Crowdin] [https://crowdin.com/project/joomla-official-sites]

The Issue Tracker proudly welcomes translations contributed via Crowdin [https://crowdin.com/]. The project can be found at https://crowdin.com/project/joomla-official-sites.

Crowdin Guidelines

Log on to [Crowdin’s Help Center] (https://support.crowdin.com/) to find useful information and resources for Translators as well as for Developers.
You can’t find the answer to your question? Please contact [Marc-Antoine Thevenet] (https://crowdin.com/mail/compose/MAT978).

Adding languages

If your language is not yet available on Crowdin, please contact [Marc-Antoine Thevenet] (https://crowdin.com/mail/compose/MAT978) or [Michael Babker] (https://crowdin.com/mail/compose/mbabker) on Crowdin so that they can set it up.
And if your language is already 100% translated, don’t hesitate to improve or comment the translations or you can simply vote for your favourite translation.

Crowdin: Other Official Joomla! Projects

Other official resources are available for translation on Crowdin. Just have a look [here] (https://crowdin.com/projects/Joomla) and help us with the localisation of Joomla.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Internationalisation/Languages.html

 Navigation

 		
 index

 		JTracker latest documentation »

Supported languages

A list of supported languages is stored in the LanguageHelper class.

To add a new language, add the following to the array of $languages:

'{code}' => [
 'iso' => '{ISO-Code}',
 'name' => '{Language name}',
 'display' => '{Language display name}'
],

		{code} The language code - e.g. en-GB - See: languagecodes [https://chronoplexsoftware.com/myfamilytree/localisation/languagecodes.htm]

		{ISO-Code} The ISO code - e.g. uk loosely following the ISO 3166-1 alpha-2 [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2] standard.

		{Language name} The language name - e.g. English - usually in English.

		{Language display name} The text to display - e.g. British English - Should be in “native” characters. - See: languagecodes [https://chronoplexsoftware.com/myfamilytree/localisation/languagecodes.htm]

Update language selector flag images

		Download the icon pack from http://forum.tsgk.com/viewtopic.php?t=4921 and store it “somewhere”

		Issue the command make languageflags using the following parameters:
		The path where the flag images are stored (“somewhere”).

		--imagefile (optional) path to store the result image.

		--cssfile (optional) path to store the result CSS file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/avatars.html

 Navigation

 		
 index

 		JTracker latest documentation »

Avatar support

On the first log in, the application tries to fetch the users avatar and store it locally.

The command get avatars will fetch the avatars for the users that appear in the #__activities table.

$ bin/jtracker get avatars
--
 Joomla! Tracker CLI Application
 1.0.0-beta
--
--
 Retrieve Avatars
--

Note: This and all remote HTTP requests requires cURL.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Dependency-Injection.html

 Navigation

 		
 index

 		JTracker latest documentation »

Dependency Injection

The issue tracker application makes use of Dependency Injection (DI) and Service Providers.

The application uses the Joomla! Framework’s DI Container [https://github.com/joomla-framework/di]. At present, this provides a hybrid solution which emulates the old JFactory functions but helps with a full transition to DI based loading.

The Container instance is instantiated within the application and several service providers are added for global use in the application.

To retrieve an object from the container, you must call $container->get($key, $forceNew) where $key is the key for the object (app, config, db) and $forceNew instructs the container to create a new instance of the specified object.

The service provider should contain the logic needed to build the object and provide default instructions to the Container on how it is accessed. Our service providers are set up so that the objects created cannot be overridden by a different object of the same name and will create a shared (reusable) instance of the object.

App Services

Each app within the application must have a base class that implements the JTracker\AppInterface (this could be compared to a Symfony bundle as a high level example). The interface defines a loadServices method which receives the global DI container as its single parameter. Apps should use this to add services created within the app to the container or to register additional options to global services.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Activity.html

 Navigation

 		
 index

 		JTracker latest documentation »

Activity Application

Purpose

Displays activity charts related to tracker activity for supported projects.

Functionality

		Web pages displaying different types of activity charts

		AJAX handlers for dynamic chart updates

Formatted Dates

Some charts use localised date strings based on PHP’s ext/intl. Below are the references for the currently supported languages:

User Activity Chart

These formats are used in the title when a custom date range is used:

Language Code | Format
————- | ————-
ca-ES | d MMMM ‘de’ y
da-DK | d. MMMM y
de-DE | d. MMMM y
en-GB | d MMMM y
es-CO | d ‘de’ MMMM ‘de’ y
es-ES | d ‘de’ MMMM ‘de’ y
et-EE | d. MMMM y
fr-CA | d MMMM y
fr-FR | d MMMM y
hu-HU | y. MMMM d.
id-ID | d MMMM y
it-IT | d MMMM y
lv-LV | y. ‘gada’ d. MMMM
nb-NO | d. MMMM y
nl-BE | d MMMM y
nl-NL | d MMMM y
pl-PL | d MMMM y
pt-BR | d ‘de’ MMMM ‘de’ y
pt-PT | d ‘de’ MMMM ‘de’ y
ro-RO | d MMMM y
ru-RU | d MMMM y ‘г’.
sl-SI | dd. MMMM y
zh-CN | y年M月d日

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Text.html

 Navigation

 		
 index

 		JTracker latest documentation »

Text Application

Purpose

Provide an easy interface for the creation of text pages.

Functionality

All text is written in GitHub Flavored Markdown [http://github.github.com/github-flavored-markdown/]. The parsed text is stored to a database table.

A simple text editor with preview functionality.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Internationalisation/Transifex.html

 Navigation

 		
 index

 		JTracker latest documentation »

Translations via Transifex

The Issue Tracker proudly welcomes translations contributed via Transifex [https://www.transifex.com]. The project can be found at https://opentranslators.transifex.com/projects/p/jtracker/.

Application configuration

In order to interface with Transifex, the BabDev Transifex Library [https://github.com/BabDev/Transifex-API] is implemented which includes a wrapper for the Transifex API. Within the application, a transifex array exists within the overall JSON object with three parameters:

		username - The username of your Transifex account

		password - The password of your Transifex account

		project - The alias of your Transifex project (the part of the project’s main URL after projects/p/

Transifex Guidelines

The following are basic guidelines for maintaining the Transifex project.

Adding languages

Languages should utilize the full language code versus a shortcode. For example, de_DE (as listed in Transifex) should be used for the German translations. All source languages should be uploaded with the language code en_GB.

Naming convention

Resources should follow a "extension" "domain" naming convention for both the name and alias. For example, the “core” translations (found at /src/JTracker/g11n) use the extension “JTracker” and domain “Core”. The resource should therefore be named “JTracker Core” with an alias of “jtracker-core”. This enables a predictable naming convention in our synchronization scripts.

Pushing to Transifex

A CLI command, update languagefiles --provider=transifex, pushes all of the language templates to Transifex which updates the source language for each resource. The Debug template must be manually updated on Transifex because the Transifex object is not properly supporting sending it. TODO Debug this.

Pulling from Transifex

A CLI command, get languagefiles --provider=transifex retrieves all translations from Transifex and updates the .po files in the filesystem with these resources. Only languages listed in the languages array in the configuration JSON are retrieved.

		TODO Establish guidance on when a language is added to the configuration.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Internationalisation/Localisation.html

 Navigation

 		
 index

 		JTracker latest documentation »

Localisation

aka The option #3 from joomla/jissues#124 [https://github.com/joomla/jissues/pull/124]

Translation 101

After you changed the code in your PHP or Twig files you should run

		bin/jtracker make langtemplates

This will create/update the pot language templates.

Those may be handed over to the translaters.

Additionally you can use the extension argument to create/update the pot language templates for the specific extension only

		bin/jtracker make langtemplates --extension=Tracker

If you want to translate yourself run the following command:

		bin/jtracker make langfiles

This will create/update the po language files according to the templates created in the previous step.

After changing the po files you have to clean the cache to “see” the translations on the site.
This can be done by simply deleting the /cache/g11n directory or, if you are logged in with an admin account, using the “clean cache” command from the “System” menu.

The workflow for JIssues repository

bin/jtracker make langtemplates
git commit -am "Update language templates"
bin/jtracker update languagefiles --provider=crowdin
bin/jtracker get languagefiles --provider=crowdin
git commit -am "Fetch updated language files"
bin/jtracker clear languagecache
git push

How it works (The option #3)

I might have stated before that I’m a very lazy person. So I like to spend my time creating scripts that do the “ugly work” for me. - Like the creation and maintainance of language files :P

The proposed solution to the above mentioned problem implemnents a (still) experimental language handler, that has not been tested out there in the wild.

The basic idea is:

		Read language files in multiple formats.

		Extract the key/value pairs.

		Store the result in a “permanent cache” to speed things up.

The language file format to use in JTracker will be po (gettext [http://en.wikipedia.org/wiki/Gettext]), the result is stored to a “native PHP array” which is written to a text file. Other options can be explored.

3a) Required changes

Changes to hard coded strings in Twig templates and PHP code:

// template.twig
<label>
 My String

 // change to:
 {{ translate("My String") }}

 // **OR** just use a pipe and a shortcut:
 {{ "My String"|_ }}
</label>

In PHP you would use the global function with an easy to remember name; g11n3t (*)

echo g11n3t('My String');

... and go home !

(*) btw: g11n3t means globalizationtext. If you don’t like it, you may create your own alias ;)

The next step would be the creation of the language files.

3b) Language template creation

For gettext files, you first create a template that contains all the keys and empty values.
These templates are used to create and update the localised language files.
The file extension for template files is .pot.

Extension.pot

msgid "My String"
msgstr ""

These files can be created and maintained manually, however... I’m a lazy person (did I say that before ?)

The gettext utility xgettext [http://linux.die.net/man/1/xgettext] can read a wide range of code languages and supports a custom function name.
It supports over 20 languages officially, others just “work” (like JavaScript can be parsed as Python...) but the only unsupported language I know is Twig :(
Fortunately this is a known issues [https://github.com/fabpot/Twig-extensions/blob/master/doc/i18n.rst], so the solution is to compile the templates and then run xgettext over the generated PHP code.

There is a new script that just collects all relevant files and passes them, along with some options, to xgettext:

bin/jtracker make langtemplates

Will automatically generate the language templates for the core JTracker application, the JTracker template as well as all the Apps.

Those language templates, once created, are now ready to hand over to the translators or send them to an online translation service.

Job finished :)

3c) Localise It !

To actually “see” the site in different languages, you have to create a file that contains the localised strings for every language.
The extension for language files is .po.

For example a german language file might look like this:

de-DE.Extension.po

msgid "My String"
msgstr "Meine Zeichenkette"

A chinese language file might look like this (Google says..):

zh-CN.Extension.po

msgid "My String"
msgstr "我的字符串"

and so on...

Translators may notice here, that you always see the original in clear text above the translation. – If you plan to handle the translations manually...

While you can also create those files manually, the gettext tools msginit [http://linux.die.net/man/1/msginit] and msgmerge [http://linux.die.net/man/1/msgmerge] can create and update language files from a given template - So why not use them (remember: me lazy...)

bin/jtracker make langfiles

will create language files for the core, the template and all extensions (Apps) in all defined languages.

What else ?

System requirements

To manually create and manage your language file(s) you will need:

		Your hand(s).

To have your language files created and managed automatically you will need:

		gnu gettext [http://directory.fsf.org/wiki/Gettext] - from which you will only need it’s utilities.

The gettext utilities should be available or installable on all *nix based systems, as well as some sons/daugthers and parents (like BSDs and apple stuff).
If you are stuck on windows, your best bet may be cygwin [http://www.cygwin.com/] (as always). There is also MinGW [http://www.mingw.org/], a sourceforge project [http://sourceforge.net/projects/gettext/], as well as this site [http://franco-bez.4lima.de/index.php?option=com_content&view=article&id=55&Itemid=64&lang=en].
I have not tried any of the above currently beside my own linux box, but I believe that if would be no problem for a windows developer with decent skills to modify the script ;)

Known issues

		There is one big FAT issue currently: Internally all strings are contained in a single array. Meaning that you can not translate the same key in two different ways in the same page call.
I believe that our application is “small enough”, so this won’t really be an issue.
There is a solution deep down in my head, but it hasn’t been translated to code yet ;) WIP

		JavaScript translations and pluralizations are supported but not implemented yet. WIP

		Performance... This will be the last time that I mention that I’m lazy but... to avoid ugly escaping/unescaping of quotes, I simply base64 encode and decode the string and md5 encode the key which is, I admit that, very very time consuming W-I-P...

Usage in the virtual environment

The virtual environment [https://github.com/joomla/jissues/blob/framework/Documentation/virtual-test-server.md] already has the gettext package added, so creating and updating language files can be done from here, in case a developer can/will not install gettext on his/her operating system.

It goes like this:

vagrant ssh
cd /vagrant
bin/jtracker make langtemplates
bin/jtracker make langfiles

It would be nice if a “non-Linux” user could test this :wink:

Refs

		https://github.com/elkuku/g11n - The experimental language handler oO

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/GitHub.html

 Navigation

 		
 index

 		JTracker latest documentation »

GitHub Application

Purpose

Provides an interface for displaying and managing data connected to GitHub

Functionality

		Stats Displays repository statistics.

		Hooks Enables management of web hooks to a repository

		Labels Enables management of labels for a repository’s issues and pulls

		Markdown Provides an AJAX interface to parse input text from GitHub Flavored Markdown to HTML

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Projects.html

 Navigation

 		
 index

 		JTracker latest documentation »

Projects Application

Purpose

Provides the abililty to manage projects within the site

Functionality

		Management Enables administrators to manage site projects

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Overview.html

 Navigation

 		
 index

 		JTracker latest documentation »

Documentation

The developer documentation is written in markdown syntax in plain text documents, managed in a git repository and ready for your contribution:

https://github.com/joomla/jissues/tree/master/Documentation

To parse and display the documentation on a live site, the markdown sources can be uploaded to the server.
Then the CLI script is executed with the make docu option, which will send requests to GitHub’s markdown parser.
The resulting HTML is then stored to the database.

It is also possible to perform these operations locally and then synchronize the remote database.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/session.html

 Navigation

 		
 index

 		JTracker latest documentation »

Session management

Is provided by the session subsystem from the Symfony2 HttpFoundation Component [http://symfony.com/doc/master/components/http_foundation/sessions.html]

The new possibilities are still to explore....

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/ISSUE_TEMPLATE.html

 Navigation

 		
 index

 		JTracker latest documentation »

If you are submitting an issue for the Joomla! CMS, please submit it at https://github.com/joomla/joomla-cms/issues/new instead. You may remove this line from the issue template.

Steps to reproduce the issue

Expected result

Actual result

System information (as much as possible)

Additional comments

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/CONTRIBUTING.html

 Navigation

 		
 index

 		JTracker latest documentation »

 This repository is for the Joomla! Issue Tracker application. If your issue pertains to the Joomla! CMS, please report your issue at https://github.com/joomla/joomla-cms/issues/new

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/pagination.html

 Navigation

 		
 index

 		JTracker latest documentation »

Pagination

I searched the web for “PHP pagination MySQL” or similar, and this came up on the first page:
http://www.awcore.com/dev/1/3/Create-Awesome-PHPMYSQL-Pagination_en

I liked the way the author solved “the problem”, the code looked acceptable... so I “forked” and Joomla!‘d it :)
The CSS was somewhat conflicting (for me), so I took one of the beautiful styles from the author, and now it looks like this:

[image: Pagination]

For now it only generates “plain links” adding a &page=n parameter to the current URL.
When we implement the search functionality, this must be revised.
I can also imagine a JavaScript (AJAX) based solution using this.

Note: The license on this is very unclear. Seems that is provided as a “snippet”. Maybe our legal department should have a look at this ;)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Debug.html

 Navigation

 		
 index

 		JTracker latest documentation »

Debug Application

Purpose

Debug and profile the application, manage log files.

Functionality

		A dedicated class for debugging, profiling and logging.

		Database logging to a log file to log queries even during redirects.

		Exception rendering including clickable file links using the xdebug protocol.

Log files

To activate or deactivate logging use the debug.logging option in etc/config.json.

Supported log events:

		application

		cron jobs

		database queries

		GitHub issues

		GitHub comments

		GitHub pull requests

		PHP error log

The supported “events” are written to separate log files.
Unsupported events go to the error.log.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Groups.html

 Navigation

 		
 index

 		JTracker latest documentation »

Groups Application

Purpose

Provides the abililty to manage user groups within site projects

Functionality

		Management Enables administrators to manage user groups and ACL for projects

 © Copyright 2016.
 Created using Sphinx 1.3.5.

.github/PULL_REQUEST_TEMPLATE.html

 Navigation

 		
 index

 		JTracker latest documentation »

 Pull Request for Issue # .

Summary of Changes

Testing Instructions

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Users.html

 Navigation

 		
 index

 		JTracker latest documentation »

Users Application

Purpose

Provides functionality for site login/logout and managing the user accounts

Functionality

		Login/Logout Interfaces between the user and the GitHub API for login activity

		Profile Displays and edits the user profile

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		JTracker latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/System.html

 Navigation

 		
 index

 		JTracker latest documentation »

System Application

Purpose

Various system tasks

Functionality

		Config editor (Currently using simple text fields where you can fill in the values).

		PHP Info Provides data on the PHP configuration for the site

		Routes Displays the active routes for the overall site and each application

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		JTracker latest documentation »

Requirements [image: Build Status] [https://travis-ci.org/joomla/jissues] [image: Scrutinizer Code Quality] [https://scrutinizer-ci.com/g/joomla/jissues/?branch=master] [image: Crowdin] [https://crowdin.com/project/joomla-official-sites]

The issue tracker application requires a server running:

		PHP 5.5 or later
		PHP’s ext/curl and ext/intl should also be installed

		MySQL 5.5.3 with InnoDB support (required to support the MySQL utf8mb4 charset)

The application also has external dependencies installable via Composer [https://getcomposer.org/] and Bower [https://bower.io/].

See also: Dependencies.

Note: All references to bin/jtracker refer to an executable symlink to cli/tracker.php. If you cannot execute the bin/jtracker symlink replace that path with cli/tracker.php

Setup

		Clone the git repo to where ever your test environment is located or download a ZIP file.
		Note If you plan to contribute to the project, you might have to use git clone --recursive to get the submodules checked out.

		Copy etc/config.dist.json to etc/config.json.

		In the etc/config.json file, enter your database credentials and other information.

		Run composer install (or the equivalent for your system) to install dependencies from Composer.
		If you need to install Composer, you can do so from http://getcomposer.org/download/.

		From a command prompt, run the install command to set up your database.
		bin/jtracker install

If you are making a change to the issue tracker’s web assets, you’ll also need to set up Bower and Grunt. Please see the Asset Management documentation for more information.

Verify the installation is successful by doing the following:

		View the site in your browser.

		Run the get project command to pull issues, issue comments and other information related to the project from GitHub.
		bin/jtracker get project

See also: CLI script.

Virtual Test Environment

As an alternative method, there is a setup for a virtual test environment using Vagrant and VirtualBox.

See also: Virtual server documentation

Using Login with GitHub

If you want the ‘Login with GitHub’ button to work properly you’ll need to register an app with GitHub. To do this manage your account at github.com and go to the applications page. Create a new application.

You’ll be asked for the application URL and the callback URL. This can be your test server or your localhost environment. As long as you enter the URL that your localhost app is running on. An example might be http://jissues.local.

Once you’ve registered the app at GitHub you’ll receive a Client ID and a Client Secret, enter these into your installation’s etc/config.json file, along with your GitHub login credentials. You should now be able to login with GitHub successfully.

See also: GitHub Authentication

Support & Discussion

		If you’ve found a bug, please report it to the Issue Tracker at https://github.com/joomla/jissues/issues.

		Please note this repository is not for the Joomla! CMS. Take all Joomla! CMS issues, bug reports, etc.. to: http://github.com/joomla/joomla-cms

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Support.html

 Navigation

 		
 index

 		JTracker latest documentation »

Support Application

Purpose

Provides miscellaneous functionality for the site

Functionality

		Markdown Preview Displays various Markdown inputs with their HTML outputs

		Icons Displays the available icons

		Documentation Displays the site documentation

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Graphics.html

 Navigation

 		
 index

 		JTracker latest documentation »

Graphics

		https://developer.github.com/guides/rendering-data-as-graphs/

D3 ?

From their web site

		http://d3js.org/

D3.js is a JavaScript library for manipulating documents based on data. D3 helps you bring data to life using HTML, SVG and CSS. D3’s emphasis on web standards gives you the full capabilities of modern browsers without tying yourself to a proprietary framework, combining powerful visualization components and a data-driven approach to DOM manipulation.

Why D3 ?

		http://blog.visual.ly/why-d3-js-is-so-great-for-data-visualization/

More on D3

		Wiki https://github.com/mbostock/d3/wiki

		Tutorials https://github.com/mbostock/d3/wiki/Tutorials

		Gallery https://github.com/mbostock/d3/wiki/Gallery

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Dependencies.html

 Navigation

 		
 index

 		JTracker latest documentation »

Dependencies for joomla/tracker 1.0.0-beta

Issue Tracking application built on the Joomla! Framework integrating with GitHub to replace the existing Joomlacode solution.

		Source URL: https://github.com/joomla/jissues

Core

		PHP version: >

=5.5

		Database: MySQL

PHP - Production

ext-curl (*)

		Installed:

		Source URL:

ext-intl (*)

		Installed:

		Source URL:

joomla/application (~1.4)

Joomla Application Package

		Installed: 1.6.0

		Source URL: https://github.com/joomla-framework/application.git

joomla/controller (~1.1)

Joomla Controller Package

		Installed: 1.1.2

		Source URL: https://github.com/joomla-framework/controller.git

joomla/database (~1.4)

Joomla Database Package

		Installed: 1.4.2

		Source URL: https://github.com/joomla-framework/database.git

joomla/date (~1.1)

Joomla Date Package

		Installed: 1.1.1

		Source URL: https://github.com/joomla-framework/date.git

joomla/di (~1.1)

Joomla DI Package

		Installed: 1.3.1

		Source URL: https://github.com/joomla-framework/di.git

joomla/event (~1.1)

Joomla Event Package

		Installed: 1.2.0

		Source URL: https://github.com/joomla-framework/event.git

joomla/filter (~1.1)

Joomla Filter Package

		Installed: 1.2.0

		Source URL: https://github.com/joomla-framework/filter.git

joomla/github (~1.2)

Joomla Github Package

		Installed: 1.4.0

		Source URL: https://github.com/joomla-framework/github-api.git

joomla/http (~1.1)

Joomla HTTP Package

		Installed: 1.2.2

		Source URL: https://github.com/joomla-framework/http.git

joomla/input (~1.1)

Joomla Input Package

		Installed: 1.2.0

		Source URL: https://github.com/joomla-framework/input.git

joomla/model (~1.1)

Joomla Model Package

		Installed: 1.2.0

		Source URL: https://github.com/joomla-framework/model.git

joomla/oauth2 (~1.1)

Joomla OAuth2 Package

		Installed: 1.1.4

		Source URL: https://github.com/joomla-framework/oauth2.git

joomla/profiler (~1.1)

Joomla Profiler Package

		Installed: 1.2.0

		Source URL: https://github.com/joomla-framework/profiler.git

joomla/registry (^1.4.5)

Joomla Registry Package

		Installed: 1.5.2

		Source URL: https://github.com/joomla-framework/registry.git

joomla/renderer (~2.0@dev)

Joomla Renderer Package

		Installed: dev-master af4fe2a19d3f5d46a9b517b1b4d615c02d6341f1

		Source URL: https://github.com/joomla-framework/renderer.git

joomla/router (~1.1)

Joomla Router Package

		Installed: 1.1.2

		Source URL: https://github.com/joomla-framework/router.git

joomla/string (~1.3)

Joomla String Package

		Installed: 1.4.0

		Source URL: https://github.com/joomla-framework/string.git

joomla/uri (~1.1)

Joomla Uri Package

		Installed: 1.1.1

		Source URL: https://github.com/joomla-framework/uri.git

joomla/utilities (^1.3.3)

Joomla Utilities Package

		Installed: 1.4.0

		Source URL: https://github.com/joomla-framework/utilities.git

joomla/view (~2.0@dev)

Joomla View Package

		Installed: dev-2.0-dev

		Source URL: https://github.com/joomla-framework/view.git

symfony/http-foundation (2.8.*)

Symfony HttpFoundation Component

		Installed: v2.8.8

		Source URL: https://github.com/symfony/http-foundation.git

twig/twig (~1.23)

Twig, the flexible, fast, and secure template language for PHP

		Installed: v1.24.1

		Source URL: https://github.com/twigphp/Twig.git

elkuku/g11n (~3.0)

The g11n language library

		Installed: 3.0

		Source URL: https://github.com/elkuku/g11n.git

elkuku/console-progressbar (1.0)

This class provides you with an easy-to-use interface to progress bars.

		Installed: 1.0

		Source URL: https://github.com/elkuku/ConsoleProgressBar.git

elkuku/crowdin-api (~1.0)

A crowdin API implementation in PHP

		Installed: 1.1

		Source URL: https://github.com/elkuku/crowdin-api.git

babdev/transifex (~1.0)

The Transifex API Package is a wrapper of the Transifex API available for PHP developers

		Installed: 1.3.0

		Source URL: https://github.com/BabDev/Transifex-API.git

codeguy/upload (1.3.2)

Handle file uploads with extensible validation and storage strategies

		Installed: 1.3.2

		Source URL: https://github.com/codeguy/Upload.git

filp/whoops (2.*)

php error handling for cool kids

		Installed: 2.1.2

		Source URL: https://github.com/filp/whoops.git

league/flysystem (~1.0)

Filesystem abstraction: Many filesystems, one API.

		Installed: 1.0.24

		Source URL: https://github.com/thephpleague/flysystem.git

monolog/monolog (1.*)

Sends your logs to files, sockets, inboxes, databases and various web services

		Installed: 1.20.0

		Source URL: https://github.com/Seldaek/monolog.git

raveren/kint (~1.0)

Kint - debugging helper for PHP developers

		Installed: 1.0.10

		Source URL: https://github.com/raveren/kint.git

adaptive/php-text-difference (1.*)

A comprehensive library for generating differences between two hashable objects (strings or arrays). Fork of a fork to add namespaces and psr-4 autoloading

		Installed: v1.0.3

		Source URL: https://github.com/adaptivemedia/php-text-difference.git

PHP - Development

mustache/mustache (2.1.*)

A Mustache implementation in PHP.

		Installed: v2.1.0

		Source URL: https://github.com/bobthecow/mustache.php.git

phpunit/phpunit (4.*)

The PHP Unit Testing framework.

		Installed: 4.8.26

		Source URL: https://github.com/sebastianbergmann/phpunit.git

squizlabs/php_codesniffer (1.*)

PHP_CodeSniffer tokenises PHP, JavaScript and CSS files and detects violations of a defined set of coding standards.

		Installed: 1.5.6

		Source URL: https://github.com/squizlabs/PHP_CodeSniffer.git

sebastian/phpcpd (*)

Copy/Paste Detector (CPD) for PHP code.

		Installed: 2.0.4

		Source URL: https://github.com/sebastianbergmann/phpcpd.git

phploc/phploc (*)

A tool for quickly measuring the size of a PHP project.

		Installed: 3.0.1

		Source URL: https://github.com/sebastianbergmann/phploc.git

clue/graph-composer (*)

Dependency graph visualization for composer.json

		Installed: v1.0.0

		Source URL: https://github.com/clue/graph-composer.git

JavaScript

jquery (1.9.1)

jQuery component

		Source URL: https://github.com/jquery/jquery-dist

jquery-validation (1.15.0)

Form validation made easy

		Source URL: http://jqueryvalidation.org/

bootstrap (2.3.2)

		Source URL: https://github.com/twbs/bootstrap

bootstrap-switch (3.3.2)

Turn checkboxes and radio buttons in toggle switches.

		Source URL: https://github.com/nostalgiaz/bootstrap-switch

markitup (1.1.14)

		Source URL: https://github.com/markitup/1.x

blueimp-tmpl (2.5.3)

<

 1KB lightweight, fast &

 powerful JavaScript templating engine with zero dependencies. Compatible with server-side environments like node.js, module loaders like RequireJS and all web browsers.

		Source URL: https://github.com/blueimp/JavaScript-Templates

blueimp-canvas-to-blob (3.3.0)

		Source URL: https://github.com/blueimp/JavaScript-Canvas-to-Blob

blueimp-file-upload (9.3.0)

File Upload widget with multiple file selection, drag

&

amp;drop support, progress bar, validation and preview images, audio and video for jQuery. Supports cross-domain, chunked and resumable file uploads. Works with any server-side platform (Google App Engine, PHP, Python, Ruby on Rails, Java, etc.) that supports standard HTML form file uploads.

		Source URL: https://github.com/blueimp/jQuery-File-Upload

jquery-textrange (1.3.3)

		Source URL: https://github.com/dwieeb/jquery-textrange

g11n-js (1.1)

g11n is a custom language handler - made primarily for Joomla!

		Source URL: https://github.com/elkuku/g11n-js

twbs-pagination (1.3.1)

jQuery simple pagination plugin for bootstrap-style webpages

		Source URL: https://github.com/esimakin/twbs-pagination

bootstrap-select (1.10.0)

		Source URL: http://silviomoreto.github.io/bootstrap-select

d3 (3.5.16)

A JavaScript visualization library for HTML and SVG.

		Source URL: https://github.com/mbostock-bower/d3-bower

jquery-simple-color (1.2.1)

A dead-simple jQuery color picker.

		Source URL: https://github.com/recurser/jquery-simple-color

Caret.js (0.3.1)

		Source URL: https://github.com/ichord/Caret.js

jquery.atwho (1.5.0)

		Source URL: https://github.com/ichord/At.js

semantic-ui-dropdown (1.10.3)

Dropdown - Semantic UI

		Source URL: http://www.semantic-ui.com

semantic-ui-transition (1.10.4)

Transition - Semantic UI

		Source URL: http://www.semantic-ui.com

octicons (4.2.0)

		Source URL: https://github.com/github/octicons

Credits

Media

jQuery File Tree

		https://www.abeautifulsite.net/jquery-file-tree

Flags Icons

		http://forum.tsgk.com/viewtopic.php?t=4921

IDE

JetBrains PHPStorm

PhpStorm — PHP IDE that goes beyond the language.

		http://www.jetbrains.com/phpstorm/

Sublime Text

Sublime Text is a sophisticated text editor for code, markup and prose.

		http://www.sublimetext.com/

Environment

GitHub

GitHub acts as our authentication provider, software repository, markdown parser engine and general service provider for the issue tracker infrastructures.

		https://github.com/

Translations

Crowdin

The Issue Tracker utilises Crowdin to manage translations of the user interface. If you would like to help translating, please head over to the project page on Crowdin [https://crowdin.com/project/joomla-official-sites].

		https://crowdin.com/

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Applications/Tracker.html

 Navigation

 		
 index

 		JTracker latest documentation »

Tracker Application

Purpose

Provides the main issue tracking functionality

Functionality

		Issue Tracking The primary issue tracking interfaces to include an item edit view, item display view, and list view

		Hooks Web hooks which are processed after events on GitHub

		Upload Enables upload functionality of specified file types

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Virtual-Test-Server.html

 Navigation

 		
 index

 		JTracker latest documentation »

Virtual environment server

The purpose is to create an “instant” virtual operating system including an AMP stack.

So you basically have to issue only one line on the CLI to get a working instance of the JTracker project for local development.

Requirements

		VirtualBox [https://www.virtualbox.org/]

		Vagrant [http://www.vagrantup.com/]

		The ability to use your operating systems command line interface (Need a Tutorial [http://lifehacker.com/5633909/who-needs-a-mouse-learn-to-use-the-command-line-for-almost-anything] ?).

Note If you are a happy debian [http://debian.org] (sid) user, you can get everything you need using:

apt-get install virtualbox vagrant

Start Up

		Clone or download this repository.

		cd to/the/path where you downloaded/checked out the code

		vagrant up - NOTE: The very first startup will probably take some minutes to complete, since packages have to be downloaded. Time depends, as always, on your ISP.
Subsequent starts will take about 10 secs.

		Test: Open http://127.0.0.1:2345 in your browser. (The site should show up with a database error => proceed with setup)

Setup

You have to run the setup from the command line of your virtual “guest” operating system.

		cd to/the/path where you downloaded/checked out the code

		vagrant ssh - Welcome to Linux ;)

		cd /vagrant - ! Note that this is actually the repository root outside of your virtual machine which is mounted as a shared folder [https://www.virtualbox.org/manual/ch04.html#sharedfolders] !! (!)

		Follow the general setup instructions.
bin/jtracker install

		The config file config.vagrant.json will be used for setup.

NOTE The config.vagrant.json file is under version control so you might want to issue the following command to ignore changes made to this file:
git update-index --assume-unchanged etc/config.vagrant.json

NOTE In order to work together with GitHub when developing, please sign up for a Developer application [https://github.com/settings/applications] in GitHub. And you will need to fill in the Authorization callback URL as http://localhost:2345.

NOTE Sometimes you may come up with the permission error with the files in logs dir and the files in JROOT/www/images/avatars(after you setup GitHub and try to log in with GitHub). Just simply cd to/the/path in terminal where you downloaded/checked out the code, then run chmod 0777 -R logs and chmod 0777 -R /www/images/avatars to give full permission for the application to read/write the logs and avatars folder.

That should be it.

Go for the code :wink:

Shut down and Destroy

When you are finished and want to stop the VM to work with it later, you should either run halt or suspend, the latter requiring a bit more disc space while providing a somewhat faster startup.

		vagrant halt OR vagrant suspend

To delete the whole VM run

		vagrant destroy

Additional Features

The TrackerApplication has been modified to look for an environment variable JTRACKER_ENVIRONMENT.
If it is set to “something”, a config file with the same name will be loaded.

Example
You may set the environment variable from inside a VirtualHost directive in one of your Apache config files.

<VirtualHost *:80>
 ...
 SetEnv JTRACKER_ENVIRONMENT foobar
 ...
</VirtualHost>

With the environment variable set to foobar you will have to create the file config.foobar.json.

NOTE that you’ll have to supply the environment variable separately to the CLI application - depending on your OS:

Note: Apache and PHP are configured to write log files to the logs directory at the repo root outside the virtual machine. They are at “debug” level, so they are growing fast. Consider logrotate [http://linux.die.net/man/8/logrotate] or similar.

P.S.: You might also like: elkuku/vagrant-joomla-cms [https://github.com/elkuku/vagrant-joomla-cms] :wink:

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Database-Migrations.html

 Navigation

 		
 index

 		JTracker latest documentation »

Database Migrations

A simple Migrations class is used to track database migrations for the issue tracker application.

File Structure

All schema migration files are stored in the etc/migrations folder and use a file name in the format of YYYYMMDD### where:

		YYYYMMDD is the date the migration was added (for example, for 11 June 2016 this would be 20160611)

		### is an index number of the migration relative to the current date (this format supports the possibility for 1000 migrations for a single day)

The base migration version is 20160611001 and this represents the database schema at the time this API was created.

Creating Migrations

To create a migration, add a new file to the etc/migrations folder following the file name format listed above and add all SQL statements relevant to the change to this file. The same changes should also be made to the base install SQL file so it remains in sync for new installations.

Additionally, the new migration’s version should be added to the base install SQL file so that new installations are correctly in sync with the proper migration version.

Checking Migration Status

To validate an installation is on the correct version there is a CLI command which will report the status. Run bin/jtracker database:status to get the current status. The command’s output will inform you if you are not on the current version and provide details about the missing migrations.

Migrating the Database

To migrate the database to the current version, run the database migrate CLI command. This will apply all migrations that have not been applied to the current installation.

To apply a single migration (if it has not been applied), you can pass the --version option (-v as a shortcut), for example bin/jtracker database migrate --version=20160611001 would apply only the 20160611001 versioned migration.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Directory-Structure.html

 Navigation

 		
 index

 		JTracker latest documentation »

Directory structure

Project ROOT

├── .github GitHub repository metadata

├── bin

│ └── jtracker -> ../cli/tracker.php A symbolic link to the JTracker CLI Application.

├── build

│ ├── phpcs

│ │ └── Joomla The Joomla! Coding Standards
If this folder does not exist, run git submodule init and git submodule update from within your project root directory.

│ ├── puppet Configuration files for the Vagrant virtual machine.

├── cache The cache directory.

├── cli The command line application.

│ ├── Application All code for the command line application.

│ ├── completions Autocomplete files for various command line resources.

│ ├── g11n Translations for the command line application’s output.

│ ├── tracker.php The front controller for the command line application.

├── Documentation The project documentation.

├── etc

│ ├── migrations Database migrations
│ ├── config.dist.json Copy this file to config.json.

│ ├── config.json This is your configuration file.

│ ├── config.travis.json Configuration file used for the Travis CI server.

│ ├── config.vagrant.json Configuration file used for the Vagrant virtual machine. Note that you might issue git update-index --assume-unchanged for this file to prevent accidently commits.

│ └── mysql.sql The MySQL installation file.

├── logs The log directory (This folder must be set to 077 if you use the Vagrant box).

├── src

│ ├── App The custom Apps (extensions) the make up the Application.

│ └── JTracker The JTracker “Core” Application.

├── templates Template files (Twig, PHP, etc).

│ ├── JTracker

│ │ └── g11n The language files for the JTracker template.

├── tests The tests directory.

├── vendor All 3rd party vendor code (PHP).

├── www This is the Web root folder.

│ ├── images

│ │ ├── avatars Avatar images (This folder must be set to 077 if you use the Vagrant box).

│ ├── media Most web accessible media (CSS, JavaScript, fonts) lives here. Also, if you have set up Bower and Grunt for development, uncompressed media from Bower projects is placed here.

│ ├── index.php The front controller for the web application.

├── .gitignore Git ignore definitions.

├── .gitmodules Git submodule definitions.

├── .php_cs PHP-CS-Fixer config file.

├── .travis.yml Travis-CI config file.

├── bower.json Bower config file.

├── build.xml Ant config (not used).

├── composer.json Composer config file.

├── composer.lock Composer lock file.

├── credits.json Credits file.

├── Gruntfile.js Grunt task configuration.

├── package.json Node package definition.

├── phpunit.xml PHPUnit config.

├── README.md Please read me...

├── Vagrantfile Vagrant config file.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Openshift.html

 Navigation

 		
 index

 		JTracker latest documentation »

Openshift PaaS

WhatIs https://www.openshift.com/

Short: The Open Hybrid Cloud Application Platform by Red Hat

@todo more info

Setup

		Go to https://openshift.redhat.com/app/console/application_types?search=php, create a new application type PHP, MySQL, and phpMyAdmin.

		Under “Source code” put https://github.com/joomla/jissues.git and the branch openshift (@todo master?)

		=> Create the Application

		Look around, then click on “Continue to the application overview page”.

Environment Variables

Several parameters have to be passed as environment variables to make the application aware of the Openshift environment. This is also a security feature.

Use the rhc client tools to set the environment variables:

rhc env set <var_name>=<var_value> -a <application>

JTRACKER_ENVIRONMENT="openshift"
JTRACKER_GITHUB_CLIENT_ID=<github_client_id>
JTRACKER_GITHUB_CLIENT_SECRET=<github_client_secret>
JTRACKER_GITHUB_USERNAME=<your_github_username>
JTRACKER_GITHUB_PASSWORD=<your_github_password>

e.g.:

rhc env set JTRACKER_ENVIRONMENT=openshift -a trackertest

Installation

		Open your terminal and SSH into the application.

		cd app-root/repo/bin

		./jtracker install

Done.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Users/GitHub-Authentication.html

 Navigation

 		
 index

 		JTracker latest documentation »

GitHub Authentication

GitHub limits requests to its API to 60 per hour for unauthenticated requests, and to 5000 per hour for requests using either basic authentication or oAuth.

For the initial import of issues and issue comments to the database we need to authenticate with GitHub to avoid to exceed the rate limit.

To use your GitHub credentials from the CLI script, edit the etc/config.json file and fill in your GitHub username and password, answer “yes” to the question if you wish to authenticate, or pass the --auth option.

This will add the possibility to authenticate a user with their GitHub account using oAuth authentication.

oAuth login

In order to test the login feature in your local environment you will need to create an application key and secret for your (local) JTrackerApplication instance:

		Sail to your account on GitHub ⇒

 “Edit your Profile”.

		Go to “Applications” - “Developer applications” and “Register new application”

		Fill in some name and some main URL. Those will be presented to the user when authorizing the application.

		Fill in a domain for callback URL. This must match the domain the application is running. This may be http://localhost or a virtual host.

		Hit “Save” and copy the client_id and client_secret.

		Edit etc/config.json and fill in the client_id and client_secret.

		Install as usual.

		Sail to your localhost’s JTracker installation and click on “Login with GitHub”

		On the first attempt you will be redirected to GitHub where you have to confirm the access by your application.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Users/Access-Control.html

 Navigation

 		
 index

 		JTracker latest documentation »

Access Control (ACL)

ACL is limited and very specific:

		Only Projects are tracked.

		There are only 5 “hard wired” Actions:
view, create, edit, editown and manage.

		It is based on groups a user automatically belongs to or can be assigned to.

For every project two system groups are created by default:
Public and User.

The special admin user role that is assigned using the etc/config.json file is granted global access.

Following is an example setup for a security tracker with non public access and two additionally created custom groups:

[image: acl-projects-groups]

Note that if you have Edit permissions, you have automatically Editown permissions.

Currently the items that are editable with edit own permissions are hard coded. You can only edit the title and description of an item (not the status, priority etc.).
If we (re)implement custom fields, those should receive a property canEditOwn o be controlled separately.

However, this is a very first step... lots of optimization and testing required here.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/Asset-Management.html

 Navigation

 		
 index

 		JTracker latest documentation »

Asset Management

The issue tracker uses Bower [https://bower.io] and Grunt [http://gruntjs.com] for managing and compiling its media assets.

Default Environment

The compiled production assets are checked into the repo and used by default. If making changes to any assets (anything related to Bower or the tracker’s JavaScript API), you will need to set up the development environment.

Development Environment

Setup

Note: Commands here may need to be prefixed with sudo depending on your local configuration

To set up the development environment, you will need to have npm [https://www.npmjs.com] and Bower installed. With those installed, run the following commands to set up all dependencies:

npm install
bower install

This will install the necessary dependencies to your local system.

To set up your development environment to use the uncompiled assets, you will need to run this command:

grunt bower

This command copies all required Bower dependencies from the bower_components directory to the www/media/*/vendor directories (both of these paths are gitignored). You can now set the debug.template configuration key to 1 to enable the rendering engine’s debug mode which uses the uncompiled assets.

Compiling Assets

If making changes to the assets (updating Bower dependencies or editing the tracker’s JavaScript API), you will need to recompile the production assets. You can do that with this command:

grunt

This triggers the default grunt command which does the following operations; the command to trigger only these steps is also noted:

		Copy Bower assets to www/media/*/vendor (grunt:bower)

		Create combined (non-compressed) assets at www/media/*/vendor.* (grunt:bower_concat)

		Minify www/media/js/vendor.js (grunt:uglify:bower)

		Minify www/media/js/jtracker.js (grunt:uglify:core)

		Fix certain paths in www/media/css/vendor.css (grunt:replace)

		Minify www/media/css/vendor.css (grunt:cssmin)

		Copy the Octicon fonts to www/media/fonts (grunt:copy:octicons)

		Copy the Blueimp images to www/media/img (grunt:copy:upload)

		Copy the jQuery localization plugin’s translations to www/media/js/validation (grunt:copy:validation)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Documentation/Development/CLI-application.html

 Navigation

 		
 index

 		JTracker latest documentation »

CLI - Command Line Application

The script is located at /bin/jtracker, which is a symlink to /cli/tracker.php created for convenience.
It is meant to be executed on the computers command line interface [https://en.wikipedia.org/wiki/Command-line_interface].

This script will do:

		Setup the required database for the application.

		Initial import and further update of issues and issue comments from GitHub.

		Lots of other functionality for maintaining the application in sync and generate lots of useful stuff.

Usage:

jtracker <command> [action]

See: jtracker help for more information.
Or: jtracker help <command> for more information on a specific command.

The output of the script is language aware. Just add a --lang argument:

jtracker get project --lang=ru-RU

Install the application

Copy /etc/config.dist.json to /etc/config.json and fill in your database details. To interface with GitHub, fill in your GitHub credentials.

Then run:
jtracker install

Import a project from GitHub

The command jtracker get project will retrieve the information for a given project from GitHub.
This should be used during installation and periodical executions.

To bypass inputs and write the output to a log file during cron execution, a similar command could be used:

jtracker get project -p 2 --all --status=all --quiet --noprogress --log cron.log

Note get project will “batch run” the available get commands in the correct (..erm) order.

Colors

The Joomla! Framework’s command line application class supports the display of colorful output on ANSI enabled terminals and the issue tracker makes use of this.

ANSI color codes are supported in most (if not all) *nix style terminals.
Windows support was tested from a virtual machine running Windows XP with Git for Windows and GitHub for Windows (both include terminals) but neither those nor the standard Windows command prompt supported ANSI colors.
Then Cygwin [http://www.cygwin.com/] was installed and produced the following output:

[image: win-colors1]

Progress Bar

Since there are some long running operations (over 10 minutes pulling the CMS’ issues), there is support for a “high class” progress bar.

The progress bar comes from the elkuku/console-progressbar [https://packagist.org/packages/elkuku/console-progressbar] package (which is a fork of PEAR/Console_ProgressBar [http://pear.php.net/package/Console_ProgressBar])

[image: progressbar3]

Unsupported...

If your terminal does not support ANSI control codes you may see something like this:

[image: win-colors-fail]

Turn it off !

To suppress color output for a single command use the --nocolors switch.
To suppress the progress bar for a single command use the --noprogress switch.
Example:
jtracker get project --nocolors --noprogress

To turn the feature(s) off permanently edit etc/config.json and set the values for the undesired features from 1 to 0.

Auto Complete

Auto complete files are provided for some environments.

Optionally you can generate the files for your language using

jtracker make autocomplete --lang=xx-XX

using one of the supported languages.

PhpStorm

If you use PhpStorm, you may use the Command Line Tools Console [http://www.jetbrains.com/phpstorm/webhelp/command-line-tools-console-tool-window.html] to execute the jtracker script.

To get auto complete for the jtracker commands, copy the file Custom_jtracker.xml to the folder .idea/commandlinetools inside your JTracker project (create the folder if it does not exist). This will set up an alias jt that points to the /bin/jtracker script.

[image: cli-auto-complete]

Don’t miss the documentation - Press Ctrl + Q

[image: cli-auto-complete1]

The fish shell

Provides auto complete for users of the fish shell [https://fishshell.com].

To use it, copy (or better symlink) the file
{repo}/cli/completions/jtracker.fish
to
~/.config/fish/completions/
and restart your shell.

Works in PHPStorms “Terminal”.

[image: 2016-07-15-125504_1366x768_scrot]

[image: 2016-07-15-125543_1366x768_scrot]

[image: 2016-07-15-125430_1366x768_scrot]

And of course in your favourite terminal too.

[image: tty]

Happy auto completing =;)

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

